Wednesday, December 7, 2011

Video: Random noise helps make signals clearer

Tuesday, December 6, 2011

Scientists have shown the energy conditions, under which a weak signal supplied to a physical system emerges as a stronger signal at the output thanks to the presence of random noise (a process known as stochastic resonance), in a paper that has just been published in EPJ B?.

Stochastic resonance goes against the intuitive idea that where noise is present, the signal tends to fade. It occurs in systems where the response is not proportional to the applied input signal, known as nonlinear systems.

The authors, Shubhashis Rana, Sourabh Lahiri and Arun M. Jayannavar from the Institute of Physics, in Bhubaneswar, India, used a model consisting of a symmetric double-well energy potential in which a particle moves randomly. They studied the effect of the steepness of the walls of the confining energy potential by observing the movement of the particle, which they subjected to an external sinusoidal signal that alternately lowers either of the wells.

The authors selected a quantifier ? the average work done on the system by the signal ? to determine the conditions under which the particle moving from one well to the opposite side well and back at every cycle of the signal reaches stochastic resonance. They found that it only occurs when the potential is "hard", meaning that it has sufficiently steep walls, but breaks down otherwise. Previous work used different quantifiers and found similar results, confirming their findings using numerical simulations.

This study contributes to improving scientists' understanding of stochastic resonance. It could, ultimately, contribute to gaining deeper insights into physics-related phenomena such as the processing of unclear images to increase their resolution* and biological systems, including mechanoreceptor cells in crayfish and the functioning of sensory neurons in humans.

###

Rana S, Lahiri S, Jayannavar A M (2011). The role of soft versus hard bistable systems on stochastic resonance using average cycle energy as a quantifier. European Physical Journal B (EPJ B) 84, 2. DOI 10.1140/epjb/e2011-20802-9

Springer: http://www.springer.com

Thanks to Springer for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.

This press release has been viewed 10 time(s).

Source: http://www.labspaces.net/115763/Video__Random_noise_helps_make_signals_clearer

stanford stanford when does daylight savings time end world series mvp rocky horror picture show rutgers risky business

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.